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Optimal rates of convergence for deconvolving a density

Raymond J. Carroll Peter Hall
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SUMMARY. Suppose we observe the sum of two independent random variables X and Z,

where Z denotes measurement error and has a known distribution, and where the unknown

density f of X is to be estimated. It is shown that if Z is normally distributed and if f has

k bounded derivatives, then the fastest attainable convergence rate of any nonparametric

estimator of f is only (log n)--/2. Therefore deconvolution with normal errors may not

be a practical proposition. Other error distributions are also treated. Stefanski-Carroll

(1987b) estimators achieve the optimal rates. Our results have versions for multiplicative

errors, where they imply that even optimal rates are exceptionally slow.
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1. INTRODUCTION

Suppose we wish to gain information about the density f of a random variable X, but

because of measurement error can only observe Y = X + Z, where the measurement error

Z is independent of X. Assume Z has a known density function fz with characteristic

function Oz. Our paper addresses the question: from a sample Y1,..., Y,,, how well can f

be estimated?

Applied problems in which knowledge of f is required are discussed by Mendelsohn

& Rice (1983), see also Medgyessy (1977). Nonparametric estimates of f are discussed by

Stefanski & Carroll (1987b).

An application of our results is to the nonparametric Empirical Bayes problem, see

Maritz (1970) and Berger (1980). Here f represents the prior distribution for a sequence

of location parameters X1,..., X,,. The idea is to estimate the prior nonparametrically,

as opposed to the alternative device of specifying a parametric form for the prior with

parameters to be estimated. Our paper addresses the question: how well can a prior be

estimated nonparametrically?

Another application is to the problem of measurement error models (errors-in-variables)m

for nonlinear regression and generalized linear models; see Stefanski & Carroll (1987a).

Other recent papers include Carroll et al. (1984), Stefanski & Carroll (1985), Stefanski

(1985) and Schafer (1987). In this problem, X is the true predictor but because of mea-

surement error Z we can observe only Y = X + Z. While the middle two references use

a sensitivity analysis approach, Carroll et al. (1984) and Schafer (1987) assume a specific
'm

distributional form for f. Our paper addresses the question of how well the data can be

used in a nonparametric way to suggest a parametric form for f. Schafer (1987) shows that

in generalized linear models, the EM algorithm for maximum likelihood requires knowl-

edge of the first two conditional moments of X given Y and the response variable in the

generalized linear model. Other problems will require the conditional moments of X given

Y. In either case, how well these conditional moments can be ,-timated from data depends

v#~-* v~vwr.~ ' "V:t
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crucially on how well f can be estimated from data.

The case of normal measurement error is particularly important. We show in this

paper that if f has k bounded derivatives, and if errors are normal, then the fastest rate

of convergence of any estimator of f is only (logn)-/2, and that this rate is achieved

by a kernel estimator of Stefanski-Carroll (1987b) type. This very slow rate suggests

that deconvolution may not be a practical procedure with normal errors, even if optimal

estimators are employed. With k = 2, it also follows that the best achievable rate for

estimating the distribution function of X can be no faster than (log n)-3/2. Thus, even

estimating probabilities for X is difficult.

We also show that Stefanski-Carroll estimators attain optimal convergence rates for

many other error distributions, such as gamma, exponential and double exponential. For

example, the optimal achievable rate in the double exponential case is n - k/( 2 k+5) Our

results indicate that if the error density is compactly supported and infinitely differentiable

then the optimal convergence rate is slower than n- a for any a > 0. Deconvolving a

density with smooth measurement error is intrinsically difficult, with convergence rates

much slower than those usually encountered in density estimation.

Our results have obvious implications for models with multiplicative error, Y = XZ,

which may be expressed additively by taking logs. The density of log Z is infinitely dif-

* ferentiable in many important cases, such as when Z is gamma or lognormal, and so

convergence rates are extremely slow. Hence, deconvolution is difficult when errors are

multiplicative.

Of course, our lower bounds to convergence rates continue to apply when error dis-

tributions are known imperfectly, for example when errors are normal with unknown vari-

ance. In such cases, where the error distribution is specified up to estimable parameters,

the distribution can often be estimated n, -consistently by replication. Since estimators

of the X-density f converge at rates considerably slower than n- , replacing the true

error distribution by its estimated version does not measurably affect convergence rates



of Stefanski-Carroll estimators. Hence, both our lower and upper bounds to convergence

rates apply when error distributions are imperfectly specified, up to a parametric form.

The next section gives details of our calculations in the case of normal measurement

errors. In section 3 we briefly discuss other error distributions.

2. DECONVOLUTION WHEN ERRORS ARE NORMAL

Write CA, (B) for the class of k-times differentiable densities f having sup f < B and

sup I < B. Let X have density f, Z be normal N (0, 1) independent of X, and

Y = X+ Z. The following theorem provides bounds to the accuracy with which f E Ck (B)

can be estimated from an n-sample of Y's. 0'

Let x0 be any real number, and f(xo) be any nonparametric estimator of f(xo), based

on an n-sample of Y's. WA

Theorem 1. Assume that the error distribution is normal N(0, 1). If, for some sequence

of positive constants {a,, n > 1}, we have

liminf inf P,{If(xo)-f(xo)I__an}=1 (2.1)
n-- fECk(E)

for each B > 0, then

lim (log n)'/ an 0 o. (2.2)
n co

Theorem 1 declares that the rate of convergence of f to f cannot be faster than

(log n) - /2, over densities in C, (B). Kernel estimators attaining this rate of convergence

may be constructed as follows; see Stefanski and Carroll (1987b). Let G be a symmetric

function vanishing outside (-1, 1), having k + 2 bounded derivatives on (-o, oo), and

satisfying G(t) = 1 + O(It I) as t - 0. Put h - (2/ log n)2,

G(w, h) = (27r)-' cos(tw/h)G(t) exp{(t/h)2 /2} dt

and f(x) (nh)- ' E, G(Y - x,h), where {Y,...,Y} is a random sample from the

distribution of Y. We have the following converse to Theorem 1.

$
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Theorem 2. Assume that the error distribution is normal N(O, 1). If the constants a,,

satisfy (2.2), and if I is the kernel estimator just defined, then (2.1) holds for each real

number xo and each B > 0.

Theorem 2 is easily proved, as follows. Put K(y) = (27r) - f e"" G(t) dt, a real-valued %

function integrating to unity. Integrating by parts k + 2 times we see that jK(y) <
C(1 + jy1k+2)-1. By Fourier inversion, f yyK(y) dy = 0 for 1 < j < k - 1, implying that

K is a k'th-order kernel (Prakasa Rao 1983, p.42). If Y = X + Z then E{G(Y - x, h) l

X} = K{(X - x)/h}, so that the mean of f(x) is the same as that of a classical k'th-order

kernel estimator based on an n-sample from the X-population. Therefore IEf(x) - f(x) <

C, (B)h' uniformly in f E CA; (B) (Prakasa Rao 1983, p.47). Furthermore,

nh2 var {f()} E{G(Y - x,h)2 } = E[E{G(Y - x,h)2 I X}]

C2 (B) exp[(2h 2 ) -1 {s 2 + t2 
- (s + t)2}] ds dt

4Cf(B) exp(st/h )dsdt < 4C 2 (B) exp(1/h
-- ( _ , ".

whence, noting that h = (2/log n) , 2
, 4'

sup P,{jf(z) - f(x)l > a,} < a-2 sup {var f(x) + IEf(x) - f(X)12
f E C h(Bf IE C (B)

_<C(B)a -2{(nh2) -1 e 1/0 +h2 2} -+0. %

This proves Theorem 2.

Finally we derive Theorem 1. To simplify notation we relocate so that xo = 0, and

rescale so that Z is normal N(O, 1), with density O(z) - r-'e-32. Let a > 1, and

write fo for the N(O,a2 ) density; 1 for the integer part of logn; b. = 2-i{(2j)!} - 4jl/4;

,7 = l-/ 2
f'%5B, where C,6 bE (0, fl are fixed; and HoH,... for Hermite polynomials

orthogonal with respect to 4. The following properties are obtainable from Magnus et al.

(1966, p.252) and Sansone (1959, p.324): H,(-x) = (-1)jHj(x);

00

exp{2zcy - (Cy) 2 } = LH(x)(eY),/j!; (2.3)
i=0

.N



fH,(x)Hj(x)e - =" dx =7rl22'i! if i= j,O0otherwise ; (2.4)

f j ip (,x) dx =(2j)!/ {4 -'(j - i)!} (25;

jbjH2j (X)O(X) 1_< C(l + 11/2)e -.2/2 (2.6)

17 sup I (d/dx)' bi H2j(x/E)tf(x/,E)I:
< CbB , (2.7) :_

where C depends only on k.

Put f, (x) = fo (x)+ r/b,H2, (x/ ),(x/c). By (2.6), and since 77(n) 0 and c < 1 < o,

f,, is a density for large n. If X has density fo or f,, then Y = X + Z has density go or g,, ,W'

respectively, where go is the Ng(0,a' + 1-) density, g,,(x) = go (x) + i/b, h, (x) and "

h, (= H2 (ycV(l)Ox-y y ox 
i ()E!{j-( ))

using (2.3) and (2.5). Since p(X)2 Igo (X ) < Ce - =2 then

V
-V

= 4)j2H,() } d - i ' fi (2j)!{(j - I)!}- (24

using (2.4). But {(21)!} (2j)!<' C(j!) 2 and j!(j 2.) '-.

l)! < 'l!. Hence, remembering that <C +2.

I < Ck+ 1klC4 /2b E(4x ) - -< Cs((E, )Il- (44)'  o(n-'). (2.9)

Given B > 0, we see from (2.6) and (2.7) that by choosing 
a large and small, not

dep enity or lare m. fnsure that fo, f, E k (B) for large n. For an event A, let P' (A)

and Po (A) denote the probability of A under f,, and fo respectively. If {a,, } satisfies (2. 1), ix

then by (2.9) and Cauchy-Schwarz,

[r.c(0)-. ()e _ a. }] < Po {0 -d , ( 0) g } ( 1) < ab( + ()' an

h1 + o(()}Po/fy (0) - f,, (0)< a,,},)}

. .. ... . . -- . . :,., ': ::, :,,='
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so that both Po{If(o) - fn(o)j a.} and Po{I!(o) - fo(O) an converge to one as

n -+ oo. Hence Ifn(0) - fo(0)1 < 2a, for large n. But If(0) - f0(0)1 = b,(21)!/1!7r1 > 

2CB(log n)-k/ 2 , where C does not depend on B. Therefore an >_ CB(log n) - /2 for large

n. Since this is true for each B > 0 then (log n)k/2an -- oo, completing the proof of

Theorem 1. Vr

The same construction can be used to show that if k = 2, the distribution function of

X can be estimated at a rate no faster than (log n)- 3 /2 . Let F. and F be the distribution

functions for fn and fo in the proof of Theorem 1, and evaluate them at EXo, where Xo > 0.

The calculations rely on an approximation to H2 1 , (xo) given by Magnus et al. (1966,

p.254) and various integral identities on p. 251 of the same reference. We omit the details.

3. DECONVOLUTION FOR GENERAL ERRORS

There are versions of Theorems 1 and 2 for a variety of different types of error distri-

butions. The general principle is that "the smoother the residual distribution, the slower

is the optimal achievable rate of convergence". It is convenient to consider this principle

in the Fourier domain, bearing in mind that smoother distributions have characteristic

functions with thinner tails. If X, Y and Z have respective characteristic functions Ox,

Oy and Oz, and if Y = X + Z where X and Z are independent, then the characteristic

function of X is recoverable from that of Y via the formula Ox = Oy /oz. Any data-based

form of this inversion becomes increasingly difficult as the tails of Oz become thinner.

For example, if Z has a gamma distribution with shape parameter a, then the tails of

Oz (t) decrease like Itl- a as It - oo, and so deconvolution is difficult for large a. In fact,

the fastest achievable rate of convergence over densities in C, (B) is n-k/(2k+20+1). This

is made clear by the following analogue of Theorem 1. Again, f(X0 ) is a nonparametric

estimator of f(xo).

Theorem 3. Assume that the error distribution is gamma with shape parameter a > 0.
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If, for some sequence of positive constants {a,, ,n > 1}, we have .

liminf inf P{If (xo) - f(xo) _ a.}=1
n-co fe¢,(B)

for each B > 0, then

lir n'/(2k+2a+l)an - +00 . (3.1)

The "double gamma" case, where Z is symmetric and IZj is gamma(a), is similar.

There, Theorem 3 continues to hold for integer a, provided 2a in (3.1) is changed to

4(a - [a/2]), where [a/2] denotes the largest integer not exceeding a/2. In particular,

the optimal rate of convergence when errors have a double exponential distribution is

n-/(2k+S)

Proofs of results such as Theorem 3, where "algebraic" rates are available, run as

follows. Let c -- 0 as n - oo, and fix a k-times differentiable density fo which is bounded

away from zero in a neighbourhood of the origin. Let H be a bounded, compactly supported

function with at least k bounded derivatives, and satisfying H(0) 4 0 and f x'H(z) dx = 0

for 0 < j < a + 1. Put fn(x) - fo(x) + kH(x/), and let gn and go be the convolution

densities for fo and fn respectively. It may be shown that if I = n-1/(2k+2a+1) then I,

defined at (2.8), satisfies I = 0 (n- '). Then, arguing much as in the proof of Theorem 1, the

best attainable rate of convergence emerges as being no faster than c'. Similar techniques

show that for smooth, infinitely differentiable error densities such as the Cauchy, the

optimal convergence rate is slower than n- for any a > 0.

Stefanski-Carroll (1987b) type kernel estimators achieve optimal rates in the normal,

gamma and "double gamma" cases. For the sake of brevity we have omitted a proof in

the latter two cases.

4. DISCUSSION

Deconvolution problems are important in their own right, as well as in nonparametric

estimation of priors. In measurement error models, deconvolution arises if one wishes

• , , , . ,. -. . . ," -'. ," " , "",% ", .: " " " "",,'" ", €' "'" " *1
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to use data to suggest models for the unobservable predictors or to estimate conditional

moments useful in likelihood calculations. When the measurement errors are normally

distributed, our results are pessimistic, suggesting that it will be difficult to deconvolve

effectively over a wide class of distributions for X.
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